But terrifying as it is, Ebola is not a worst case scenario, not yet, not as it is. During my research, I realized that the Ebola virus is limited by the fact that it requires direct exposure to the bodily fluids of an infected patient. As a result person to person transmission is typically slow and limited, making the chain of transmission easy to break. However, with its virulence, long incubation period, and lethality, if the Ebola virus were suddenly as easy to spread from person to person as influenza it would be impossible to stop and could threaten humanity itself.
It was that realization that led me to start researching diseases, and how they’ve impacted humanity in the past. The nearest thing I could find to a potential species threatening pathogen that had actually hit the human population was the Black Death of the mid-14th century that swept through Europe and killed nearly half of the population of Europe and western Asia. While that pathogen could never have wiped out all of humanity in any real scenario at the time since population densities were so low, but it very nearly wiped out the population of Europe. Whole towns and villages were wiped off the map during those years of darkness, fear, and pestilence. And in the wake of the Black Death European society was forever changed.
I wondered how that kind of situation would play out today? What would happen if a virus suddenly arose and swept through the world, killing half of the people alive on the planet, maybe more? Would modern society be able to survive that kind of catastrophe, or would there be a collapse similar to that in Europe at the end of the Black Death? It was those questions, and more like them, that led me to viruses and Ebola, specifically. I wanted to learn as much as I possibly could to make my fictional virus seem not only plausible, but possible.
I realized early on in that research that the most perfect virus I could construct, the one that would truly be a terrifying global killer, was a virus with all of the natural properties of Ebola, but with a transmission rate so high that anyone who comes into close proximity with an infected patient is at risk. If a virus like that were unleashed today, our urban lifestyle and culture would make us exponentially more vulnerable to it. As we’ve already seen, denser populations can drastically increase the spread of Ebola, even with how difficult it is to spread from person to person with casual contact. The simple barrier procedures that work so well in arresting the transmission and spread of Ebola would be completely useless against such a virus.
Science has already proven that once filoviruses get into dense populations they tend to begin spreading rapidly. Part of this spread is due to what are known as super-transmitters. These individuals transmit the virus to many times the normal average number of people, creating rings of infection that grow extremely quickly. This type of spread makes the virus very difficult to track and interrupt in dense populations such as urban environments as it allows the virus to jump from one person to a large number of dispersed people rapidly, and has an incubation period that could last up to two weeks before symptoms appear.
This type of super-transmission was recorded during the original Marburg epidemic in Germany. From that incident, epidemiologists learned that super transmitters are typically people with jobs that put them in contact with large numbers of people on a daily basis such as servers at restaurants, bartenders, grocery store clerks, teachers, and healthcare professionals. The primary contacts would be individuals that come into direct contact with the super transmitter and acquire the virus, secondary contacts are the ones that come into contact with infected primary contacts. As the rings of infected get broader, they encompass more and more people. In the end, one infected person with a high volume job that continues to work after becoming symptomatic could infect hundreds, possibly thousands of people through those multiple layers of transmission. This is a unique characteristic of urban populations and can amplify a virus rapidly. In the Marburg epidemic one hotel clerk was believed to have resulted in more than two hundred direct exposures to the virus.
Thankfully Marburg and Ebola do not appear to be easily transmitted or airborne, but we have already found some evidence that certain other types of filovirus may be. Cuevavirus, a filovirus which infects bats, is possibly airborne and seems to have an ability to spread through bat colonies rapidly as a result. In some bat colonies in Europe it appears individual strains of the virus may have swept through populations of thousands of bats in a remarkably short time, such as days or weeks. For humans that would be the equivalent of a virus affecting most of the population of a modern mega-city like Tokyo in less than a month.
In Emergence, I combined all of the worst parts of the Ebola virus with all of the worst possible improvements that could be imagined. This fictional virus, named the Jurua virus for the river on which it emerges, a tributary of the Amazon, enters the human species and infects the city of Manaus with a dense population of more than 2 million people. It hits in an area no one is expecting a filovirus to show up, the heart of the western Amazon, near the border with Brazil and Peru. Manaus is the largest city in that part of the world, a modern metropolis with a dense population and thriving industry. It’s also a city with a busy international airport.
When the Jurua virus goes from airborne to air traveler, humanity hangs in the balance.
With the world facing the second largest epidemic of Ebola virus in history less than five years after the largest, it’s a scenario that could go from nightmare to reality faster than we think.
Emergence, book one of the Red Death, is coming soon..