UK Respiratory Face Mask Ratings
Below is a quick guide to these three types of dust mask: ffp1, ffp2, ffp3 - the differences
FFP1 Dust Masks
What does a P1 filter protect against?
FFP2 Dust Masks
What does a P2 filter protect against?
FFP3 Dust Masks
What does a P3 filter protect against?
A P3 filter or mask would be the minimum required face mask for chemical fumes, but we would recommend a Half Face Respirator with a P3 Cartridge Filter rather than a disposable dust mask. The same goes for a Dust mask for Asbestos protection - although a disposable P3 dust mask is sufficient, we recommend a half mask with a P3 cartridge or contact us for a full face mask solution.
American Respiratory Face Mask Ratings
What is a respirator and what is a NIOSH-approved N-95 respirator?
A respirator is a personal protective device that is worn on the face, covers at least the nose and mouth, and is used to reduce the wearer’s risk of inhaling hazardous airborne particles (including dust particles and infectious agents), gases, or vapors. The many types of respirators available include (1) particulate respirators, which filter out airborne particles; (2) “gas masks,” which filter out chemicals and gases; (3) airline respirators, which use compressed air from a remote source; and (4) self-contained breathing apparatus, which include their own air supply. The category of particulate respirator can be further divided into (1) disposable or filtering facepiece respirators, where the entire respirator is discarded when it becomes unsuitable for further use due to excessive resistance, sorbent exhaustion, or physical damage; (2) reusable or elastomeric respirators, where the facepiece is cleaned and reused but the filter cartridges are discarded and replaced when they become unsuitable for further use; and (3) powered air purifying respirators (PAPRs), where a battery-powered blower moves the air flow through the filters.
An N-95 respirator is one of nine types of disposable particulate respirators.
Particulate respirators are also known as “air-purifying respirators” because they protect by filtering particles out of the air as you breathe. These respirators protect only against particles—not gases or vapors. Since airborne biological agents such as bacteria or viruses are particles, they can be filtered by particulate respirators.
Respirators that filter out at least 95% of airborne particles during “worse case” testing using a “most-penetrating” sized particle are given a 95 rating. Those that filter out at least 99% receive a “99” rating. And those that filter at least 99.97% (essentially 100%) receive a “100” rating.
Respirators in this family are rated as N, R, or P for protection against oils. This rating is important in industry because some industrial oils can degrade the filter performance so it doesn’t filter properly.* Respirators are rated “N,” if they are Not resistant to oil, “R” if somewhat Resistant to oil, and “P” if strongly resistant (oil Proof). Thus, there are nine types of disposable particulate respirators:
More detailed respirator information has been published by NIOSH, CDC and by the Occupational Safety and Health AdministrationExternal (OSHA).
*The SARS virus has a “shell” composed of lipids, which are fats and oils. However, the amount of fat and oil in these tiny virus particles is extremely low and is not enough to affect the filter in the N-series respirator. Thus the N-series respirators such as N-95 will protect against SARS exposure.
Can health care workers use respirators other than N-95 to protect against SARS?
Yes, workers can wear any of the types of particulate respirators for protection against SARS—if they are NIOSH-approved and if they have been properly fit-tested and maintained. All of the NIOSH-approved particulate respirators protect workers against SARS as effectively as the N-95 respirators.
A respirator will work only if it is used correctly. Thus the key elements for respiratory protection are fit-testing and training of each worker in the use, maintenance, and care of the respirator. NIOSH considers each of the nine types of disposable particulate
respirators to have similar fit characteristics. Therefore, when a worker is caring for or transporting SARS patients, having a NIOSH-approved respirator that fits well is much more important than whether the respirator is an N-95 or one of the other eight types of disposable particulate respirators.
In health care settings, the use of respirators by workers is regulated under the Occupational Safety and Health Administration (OSHA) standard for respiratory protection. The OSHA standard sets requirements for the fit-testing of respirators to ensure a proper seal between the respirator’s sealing surface and the wearer’s face. The OSHA standard also contains requirements for determining that workers can use respirators safely, for training and educating employees in the proper use of respirators, and for maintaining respirators properly. NOTE: Fit-testing and the other OSHA-required procedures are absolutely essential to assure that the respirator will provide the wearer with required protection. View detailed information on respiratory programsExternal, including fit test procedures.
Why are N-95 respirators most often recommended for SARS?
The CDC Guidelines for Isolation Precautions in Hospitals recommends that health care workers protect themselves from any disease spread through the air (airborne transmission) by wearing a respirator at least as protective as a fit-tested N-95 respirator.† These guidelines were written before SARS was discovered, but they have been used to protect against other airborne diseases such as tuberculosis.
†Although N-95 respirators are sold outside the United States, other particulate respirators are also available. If you live in another country, your country may have its own standards for particulate respirators. The particulate respirators may have different names than those certified by NIOSH in the United States. If these respirators pass testing programs comparable to those used for N-95 respirators, they should protect against SARS as well as the N-95 respirators.
Can I use a respirator with an exhalation valve?
Usually, yes. An exhalation valve reduces excessive dampness and warmth in the mask from exhaled breath.
The valve opens to release exhaled breath and closes during inhalation so that inhaled air comes through the filter. Health care workers may wear respirators with exhalation valves unless the patient has a medical condition (such as an open wound) for which a health care worker would normally wear a surgical mask to protect the patient. Similarly, respirators with exhalation valves should not be placed on a patient to contain droplets and prevent spread of infectious particles; surgical masks are adequate for this purpose.
How often do disposable respirators need to be replaced?
Once worn in the presence of a SARS patient, the respirator should be considered potentially contaminated with infectious material, and touching the outside of the device should be avoided. Upon leaving the patient’s room, the disposable respirator should be removed and discarded, followed by hand hygiene.
If a sufficient supply of respirators is not available, healthcare facilities may consider reuse as long as the device has not been obviously soiled or damaged (e.g., creased or torn). Data on reuse of respirators for SARS are not available. Reuse may increase the potential for contamination; however, this risk must be balanced against the need to fully provide respiratory protection for healthcare personnel.
Below is a quick guide to these three types of dust mask: ffp1, ffp2, ffp3 - the differences
FFP1 Dust Masks
What does a P1 filter protect against?
- Protects against low levels of dust.
- Protects against solid and liquid aerosols.
- Can be used for hand sanding, drilling, and cutting.
- OEL: Protects against materials in concentrations 4x limit.
- APF: Protects against materials in concentrations 4x limit.
FFP2 Dust Masks
What does a P2 filter protect against?
- Protects against moderate levels of dust.
- Protects against solid and liquid aerosols.
- Higher protection than FFP1
- Can be used for plastering and sanding.
- OEL: Protects against materials in concentrations 12x limit.
- APF: Protects against materials in concentrations 10x limit.
FFP3 Dust Masks
What does a P3 filter protect against?
- Protects against higher levels of dust.
- Protects against solid and liquid aerosols.
- Higher protection than FFP1, and FFP2.
- Can be used for handling hazardous powders such as those in the pharmaceutical industry.
- Recommended when in doubt of protection needed.
- OEL: Protects against materials in concentrations 50x limit.
- APF: Protects against materials in concentrations 20x limit.
- Can be used as an Asbestos mask
- Current NHS guidelines stipulate FFP3 face masks for virus and bacterial infection control when the contagion is spread through aerosol (coughs, sneezes etc)
A P3 filter or mask would be the minimum required face mask for chemical fumes, but we would recommend a Half Face Respirator with a P3 Cartridge Filter rather than a disposable dust mask. The same goes for a Dust mask for Asbestos protection - although a disposable P3 dust mask is sufficient, we recommend a half mask with a P3 cartridge or contact us for a full face mask solution.
American Respiratory Face Mask Ratings
What is a respirator and what is a NIOSH-approved N-95 respirator?
A respirator is a personal protective device that is worn on the face, covers at least the nose and mouth, and is used to reduce the wearer’s risk of inhaling hazardous airborne particles (including dust particles and infectious agents), gases, or vapors. The many types of respirators available include (1) particulate respirators, which filter out airborne particles; (2) “gas masks,” which filter out chemicals and gases; (3) airline respirators, which use compressed air from a remote source; and (4) self-contained breathing apparatus, which include their own air supply. The category of particulate respirator can be further divided into (1) disposable or filtering facepiece respirators, where the entire respirator is discarded when it becomes unsuitable for further use due to excessive resistance, sorbent exhaustion, or physical damage; (2) reusable or elastomeric respirators, where the facepiece is cleaned and reused but the filter cartridges are discarded and replaced when they become unsuitable for further use; and (3) powered air purifying respirators (PAPRs), where a battery-powered blower moves the air flow through the filters.
An N-95 respirator is one of nine types of disposable particulate respirators.
Particulate respirators are also known as “air-purifying respirators” because they protect by filtering particles out of the air as you breathe. These respirators protect only against particles—not gases or vapors. Since airborne biological agents such as bacteria or viruses are particles, they can be filtered by particulate respirators.
Respirators that filter out at least 95% of airborne particles during “worse case” testing using a “most-penetrating” sized particle are given a 95 rating. Those that filter out at least 99% receive a “99” rating. And those that filter at least 99.97% (essentially 100%) receive a “100” rating.
Respirators in this family are rated as N, R, or P for protection against oils. This rating is important in industry because some industrial oils can degrade the filter performance so it doesn’t filter properly.* Respirators are rated “N,” if they are Not resistant to oil, “R” if somewhat Resistant to oil, and “P” if strongly resistant (oil Proof). Thus, there are nine types of disposable particulate respirators:
- N-95, N-99, and N-100;
- R-95, R-99, and R-100;
- P-95, P-99, and P-100
More detailed respirator information has been published by NIOSH, CDC and by the Occupational Safety and Health AdministrationExternal (OSHA).
*The SARS virus has a “shell” composed of lipids, which are fats and oils. However, the amount of fat and oil in these tiny virus particles is extremely low and is not enough to affect the filter in the N-series respirator. Thus the N-series respirators such as N-95 will protect against SARS exposure.
Can health care workers use respirators other than N-95 to protect against SARS?
Yes, workers can wear any of the types of particulate respirators for protection against SARS—if they are NIOSH-approved and if they have been properly fit-tested and maintained. All of the NIOSH-approved particulate respirators protect workers against SARS as effectively as the N-95 respirators.
A respirator will work only if it is used correctly. Thus the key elements for respiratory protection are fit-testing and training of each worker in the use, maintenance, and care of the respirator. NIOSH considers each of the nine types of disposable particulate
respirators to have similar fit characteristics. Therefore, when a worker is caring for or transporting SARS patients, having a NIOSH-approved respirator that fits well is much more important than whether the respirator is an N-95 or one of the other eight types of disposable particulate respirators.
In health care settings, the use of respirators by workers is regulated under the Occupational Safety and Health Administration (OSHA) standard for respiratory protection. The OSHA standard sets requirements for the fit-testing of respirators to ensure a proper seal between the respirator’s sealing surface and the wearer’s face. The OSHA standard also contains requirements for determining that workers can use respirators safely, for training and educating employees in the proper use of respirators, and for maintaining respirators properly. NOTE: Fit-testing and the other OSHA-required procedures are absolutely essential to assure that the respirator will provide the wearer with required protection. View detailed information on respiratory programsExternal, including fit test procedures.
Why are N-95 respirators most often recommended for SARS?
The CDC Guidelines for Isolation Precautions in Hospitals recommends that health care workers protect themselves from any disease spread through the air (airborne transmission) by wearing a respirator at least as protective as a fit-tested N-95 respirator.† These guidelines were written before SARS was discovered, but they have been used to protect against other airborne diseases such as tuberculosis.
†Although N-95 respirators are sold outside the United States, other particulate respirators are also available. If you live in another country, your country may have its own standards for particulate respirators. The particulate respirators may have different names than those certified by NIOSH in the United States. If these respirators pass testing programs comparable to those used for N-95 respirators, they should protect against SARS as well as the N-95 respirators.
Can I use a respirator with an exhalation valve?
Usually, yes. An exhalation valve reduces excessive dampness and warmth in the mask from exhaled breath.
The valve opens to release exhaled breath and closes during inhalation so that inhaled air comes through the filter. Health care workers may wear respirators with exhalation valves unless the patient has a medical condition (such as an open wound) for which a health care worker would normally wear a surgical mask to protect the patient. Similarly, respirators with exhalation valves should not be placed on a patient to contain droplets and prevent spread of infectious particles; surgical masks are adequate for this purpose.
How often do disposable respirators need to be replaced?
Once worn in the presence of a SARS patient, the respirator should be considered potentially contaminated with infectious material, and touching the outside of the device should be avoided. Upon leaving the patient’s room, the disposable respirator should be removed and discarded, followed by hand hygiene.
If a sufficient supply of respirators is not available, healthcare facilities may consider reuse as long as the device has not been obviously soiled or damaged (e.g., creased or torn). Data on reuse of respirators for SARS are not available. Reuse may increase the potential for contamination; however, this risk must be balanced against the need to fully provide respiratory protection for healthcare personnel.